Using Indistinguishability Obfuscation with UCEs

Christina Brzuska Arno Mittelbach

TECHNISCHE UNIVERSITÄT DARMSTADT

> 001011 Cryptoplexity Cryptography & Complexity Theor Technische Universität Darmstadt www.cryptoplexity.de

The results in a nutshell

- New technique to work with indistinguishability Obfuscation
 - Extension of punctured programs technique to hide punctured points

Use Point Function Obfuscation within iO

What are UCEs?

3

The Random Oracle Model (ROM)

The Random Oracle Model (ROM)

UNIVERSITÄT

DARMSTAD

Random Oracles are Practical

Random Oracles are controversial

[CGH98,Nie02,GK03,MRH04,DOP05 ,BBP04, CGH04,BFM14]...

Bellare, Hoang, Keelveedhi (Crypto 2013) [BHK13]

The lack of a proof of security for the instantiated scheme is [...] a consequence of an even more fundamental lack, namely that of a definition, of what it means for a family of functions to "behave like a RO"

[BHK13]

10

(Universal Computational Extractors)

The symmetric setting:

(Universal Computational Extractors)

The public-key setting:

(Universal Computational Extractors)

The public-key setting:

(Universal Computational Extractors)

The UCE setting:

(Universal Computational Extractors)

UCE (Universal Computational Extractors) is a Framework

to design assumptions that describe features of a random oracle

15

What are good UCEs?

Layered Cryptography Paradigm

UCE1=UCE[S^{cup}]: Computational Unpredictability

UCE vs. iO [BrzuskaFarshimMittelbach14]

 $\mathsf{UCE}[\mathcal{S}^{\mathsf{cup}}]$ and indistinguishability obfuscation are mutually exclusive [BFM14]

- Split sources: $\mathsf{UCE}[\mathcal{S}^{\mathsf{splt}}]$
- Bounded Parallel Sources: $\mathsf{UCE}[\mathcal{S}_{\tau,\sigma,q}^{\mathsf{prl}}]$ [BFM14]
 - Statistical Sources: $\mathsf{UCE}[\mathcal{S}^{\mathsf{sup}}]$
 - . . .

However, all assumptions validated only in the ROM

What are good UCEs?

UCEs with Strongly Unpredictable Sources

21

UCEs with strongly unpredictable sources In the standard model

Indistinguishability Obfuscation

Strong Point Obfuscation

Computational unpredictability for single query: $UCE[S^{s-cup} \cap S^{1-query}]$

Statistical unpredictability for poly many queries: $UCE[S^{s-sup} \cap S^{q-query}]$

The Construction

Puncturable Pseudorandom Function

Puncturable Pseudorandom Function

 $k_{x^*}^* := \operatorname{puncture}(k, x^*)$

 $k_{x^*}^*$ allows to evaluate $\mathsf{PRF}(k, \cdot)$ on all points except for x^* .

 $iO(\mathsf{PRF}(k, \cdot))$

 $(k_{x^*}^*, \mathsf{PRF}(k, x^*)) \approx (k_{x^*}^*, \$)$

Indistinguishability Obfuscation (iO)

UNIVERSITÄT

DARMSTADT

The Construction

Puncturable Pseudorandom Function

[BST14] (previous talk)

The above construction is hardcore for an injective one-way function if padded sufficiently before obfuscation.

 $iO(\mathsf{PRF}(k,\cdot))$

The Construction

Padding depends on number of adversarial queries.

UCEs with strongly unpredictable sources In the standard model

Indistinguishability Obfuscation

Strong Point Obfuscation

Hang On!

• Where is the Point Obfuscation?

The Construction

Hang On!

• Where is the Point Obfuscation?

$$\mathsf{iO}\left(\mathsf{PRF}(k,\cdot)\right)$$

Point Obfuscation

- Only used within the proof
- AIPO: Point obfuscation secure in the presence of auxiliary information

$$b \leftarrow \{0, 1\}$$
$$(z, x_0) \leftarrow \mathcal{B}_1(1^{\lambda})$$
$$x_1 \leftarrow \{0, 1\}^{\lambda}$$
$$p \leftarrow \mathsf{AIPO}(x_b)$$
$$b' \leftarrow \mathcal{B}_2(1^{\lambda}, p, z)$$
$$\mathbf{return} \ b = b'$$

AIPOs have been built from nonstandard assumptions [C97,BP12]

z hides
$$x_0$$

statistically $\Rightarrow UCE[S^{s-cup} \cap S^{1-query}]$
 $\Rightarrow UCE[S^{s-sup} \cap S^{q-query}]$

Point Obfuscation with iO

A new proof technique

Point obfuscation allows to hide where puncturing takes place.

Point Obfuscation with iO

A new proof technique

1. "Standard Puncturing" [SW13]

32

Point Obfuscation with iO

A new proof technique

2. "Hide Punctured Point"

33

Proof Overview

Summary

Propose UCE with strong unpredictability

- statistical $UCE[S^{s-sup}] \longrightarrow correlated input security$
- computational $UCE[S^{s-cup}] \longrightarrow$ hardcore functions

Standard Model Constructions from iO and AIPO

- $UCE[S^{s-cup} \cap S^{1-query}] \longrightarrow (universal)$ hardcore functions
- $UCE[S^{s-sup} \cap S^{q-query}] \longrightarrow q-query correlated input secure hashes$
- •New iO proof technique: use Point Obfuscation Extension of punctured programs technique to hide punctured point

